In computational complexity theory, a problem is NP-complete when it can be solved by a restricted class of brute force search algorithms and it can be used to simulate any other problem with a similar algorithm. More precisely, each input to the problem should be associated with a set of solutions of polynomial length, whose validity can be tested quickly (in polynomial time), such that the output for any input is ‘yes’ if the solution set is non-empty and ‘no’ if it is empty.